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 Spark was created as an alternative to the Hadoop 
MapReduce Framework
• Spark has a rich API for developing big data apps
• Spark code is also much more concise than MapReduce (e.g. 1:5 

code quantity)

 MapReduce has only 2 data processing operations - map 
and reduce
• You have to break every problem down into a sequence of map 

and reduce jobs - this is hard!

 Spark has approx. 100 data processing operations
• Much richer and expressive API, better suited to complex tasks

Overview of Spark
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 Spark is orders of magnitude faster than MapReduce
• This is a critical factor for businesses relying on timely information

 Reason #1 - Spark uses in-memory cluster computing
• MapReduce reads/writes data to disk
• Spark allows an app to cache data in memory for processing
• Reading data in memory is 100 times faster than reading from disk

 Reason #2 - Spark has an advanced job execution engine 
• MapReduce requires complex data processing algorithms to be split 

into multiple sequential jobs, which prevents MapReduce from 
doing any optimization

• Spark doesn't force the developer to split it into multiple sequential 
jobs, which means Spark can do optimizations

Spark is Fast
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 Spark is general-purpose - it has an integrated set of 
libraries to do the following types of data processing jobs:
• Batch processing
• Stream processing
• Interactive analysis
• Machine learning
• Graph computing

 Benefits of using Spark:
• No need to learn multiple frameworks or to copy data from one silo 

system to another

Spark is Ubiquitous
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 Spark is scalable
• To increase data processing capacity of a Spark cluster, just add 

more nodes
• You can start with a small cluster and grow as necessary
• No code changes required when you add a node to a Spark cluster

 Spark and Hadoop are fault tolerant
• Spark automatically handles node failures
• No need for developers to handle these failures in your code

Additional Key Features of Spark
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 Iterative algorithms
• i.e. data processing algorithms that iterate over the same data 

multiple times
• e.g. apps that run hundreds of iterations of some algorithm over 

the same data
• Iterative algorithms run fast on Spark, due to its in-memory 

computing capabilities (i.e. apps can cache data in memory)

 Interactive analysis
• i.e. exploring a dataset interactively
• e.g. do a summary analysis of a large dataset before running a 

batch processing job that might take hours
• Spark is well-suited for interactive analysis, again due to its in-

memory computing capabilities (caching avoids multiple disk hits)

Common Uses of Spark
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 Overview
 Worker nodes and cluster managers
 Driver programs, executors, and tasks

2. Spark Architecture
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 Here's the high-level architecture of Spark

Overview
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 The Python interface to spark is very popular, called 
‘pyspark’

 Spark is written in Java, PySpark uses a library called Py4J 
to convert between python and Java

 

PySpark
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 Worker nodes
• A worker node provides CPU, memory, and storage to a Spark app
• Worker nodes run a Spark app as distributed processes on a 

cluster of nodes

 Cluster managers
• A cluster manager manages computer resources across a cluster of 

worker nodes
• Provides low-level scheduling of cluster resources across apps
• Enables multiple apps to share cluster resources and run on the 

same worker nodes
• Spark supports 3 cluster managers: Standalone, Mesos, and YARN

Worker Nodes and Cluster Managers
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 Driver programs
• A driver program is an application that uses the Spark library
• Has data processing code for Spark to execute on worker nodes
• Can launch one or more jobs on a Spark cluster

 Executors
• An executor is a JVM process that Spark creates on each worker 

node for an application
• Executes application code concurrently on multiple threads
• Can also cache data in memory or on disk

 Tasks (i.e. threads)
• A task is the smallest unit of work that Spark sends to an executor
• Executed by a thread in an executor on a worker node

Driver Programs, Executors, and Tasks
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 Overview
 Jobs
 Shuffles
 Stages
 How does a Spark application operate?
 Where does the data live?

3. Application Execution
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 In this section we'll explain how applications work in Spark
• i.e. how does a Spark application process data in parallel across a 

cluster of nodes

 Before we dive in, there's some important Spark 
terminology we need to explain first:
• Shuffles
• Jobs
• Stages

Overview
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 What is a job?
• Technically, a job is when you invoke an action operation on an 

RDD - see later for details
• Spark will execute the work across the cluster of nodes - the 

degree of parallelism depends on what operations you perform
• A job returns results to a driver program

 An application can launch multiple jobs 
• i.e. it can call several action operations on RDDs

Jobs
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 What is a shuffle:
• A shuffle redistributes data among a cluster of nodes
• This is an expensive operation, because it involves moving data 

across a network

Shuffles
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 What is a stage?
• Spark splits a job into a directed acyclic graph (DAG) of stages
• A stage is a collection of operations
• A stage may depend on another stage - e.g. a job may be split into 

two stages, where stage #2 can't begin until stage #1 is complete

 Spark groups tasks into stages using shuffle boundaries
• Tasks that don’t need a shuffle are grouped into the same stage
• A task that requires its input data to be shuffled begins a new 

stage

Stages
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 When a Spark app is run…
• Spark connects to a cluster manager, and acquires executors on 

the worker nodes
• Spark splits a job into a DAG of stages
• Spark then schedules execution of these stages on the executors
• The executors run tasks submitted by Spark, in parallel

 Every app has its own set of executors on worker nodes 
• Tasks from different apps isolated from each other - separate JVMs
• An errant task in one app can't crash another app

 Disadvantage of apps running in separate JVMs…
• Apps can't easily share data, unless they write to disk (expensive)
• Apps sharing data through disk will experience performance issues

How does a Spark Application Operate?
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 Spark isn’t a data storage system - it works in conjunction 
with external storage systems, such as:
• HDFS
• HBase
• Cassandra
• MongoDB
• Local file system
• Spark SQL

 Spark can work with any Hadoop-compatible data source
• Hadoop compatibility is important for organizations
• E.g. can easily switch from using Hadoop MapReduce to Spark

Where does the Data Come From?
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 Overview
 Downloading the Spark shell
 Installing and configuring the Spark shell
 Running the Spark shell
 REPL commands
 Running system commands
 Entering Scala expressions

4. Using the Spark Shell

21



 Spark provides a rich API for processing rich data in a 
distributed architecture
• We'll explore the details in the coming chapters

 An easy way to get started with Spark is to use the Spark 
shell
• A command-line REPL (read-evaluate-print-loop) tool 
• Based on the Scala shell
• Allows you to use Spark interactively in Scala

Overview
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Any Questions?
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