
Apache Spark



1. Introduction to Spark

2. Spark architecture

3. Application execution

4. Using the Spark Shell

Contents

2



 Overview of Spark
 Spark is fast
 Spark is ubiquitous
 Additional key features of Spark
 Common uses of Spark

1. Introduction to Spark

3



 Spark was created as an alternative to the Hadoop 
MapReduce Framework
• Spark has a rich API for developing big data apps
• Spark code is also much more concise than MapReduce (e.g. 1:5 

code quantity)

 MapReduce has only 2 data processing operations - map 
and reduce
• You have to break every problem down into a sequence of map 

and reduce jobs - this is hard!

 Spark has approx. 100 data processing operations
• Much richer and expressive API, better suited to complex tasks

Overview of Spark

4



 Spark is orders of magnitude faster than MapReduce
• This is a critical factor for businesses relying on timely information

 Reason #1 - Spark uses in-memory cluster computing
• MapReduce reads/writes data to disk
• Spark allows an app to cache data in memory for processing
• Reading data in memory is 100 times faster than reading from disk

 Reason #2 - Spark has an advanced job execution engine 
• MapReduce requires complex data processing algorithms to be split 

into multiple sequential jobs, which prevents MapReduce from 
doing any optimization

• Spark doesn't force the developer to split it into multiple sequential 
jobs, which means Spark can do optimizations

Spark is Fast

5



 Spark is general-purpose - it has an integrated set of 
libraries to do the following types of data processing jobs:
• Batch processing
• Stream processing
• Interactive analysis
• Machine learning
• Graph computing

 Benefits of using Spark:
• No need to learn multiple frameworks or to copy data from one silo 

system to another

Spark is Ubiquitous

6



 Spark is scalable
• To increase data processing capacity of a Spark cluster, just add 

more nodes
• You can start with a small cluster and grow as necessary
• No code changes required when you add a node to a Spark cluster

 Spark and Hadoop are fault tolerant
• Spark automatically handles node failures
• No need for developers to handle these failures in your code

Additional Key Features of Spark

7



 Iterative algorithms
• i.e. data processing algorithms that iterate over the same data 

multiple times
• e.g. apps that run hundreds of iterations of some algorithm over 

the same data
• Iterative algorithms run fast on Spark, due to its in-memory 

computing capabilities (i.e. apps can cache data in memory)

 Interactive analysis
• i.e. exploring a dataset interactively
• e.g. do a summary analysis of a large dataset before running a 

batch processing job that might take hours
• Spark is well-suited for interactive analysis, again due to its in-

memory computing capabilities (caching avoids multiple disk hits)

Common Uses of Spark

8



 Overview
 Worker nodes and cluster managers
 Driver programs, executors, and tasks

2. Spark Architecture

9



 Here's the high-level architecture of Spark

Overview

10

Driver Program

Executor

Task

Worker Node

Task

Executor

Worker Node

Cluster Manager

Task

Task Task Task



 The Python interface to spark is very popular, called 
‘pyspark’

 Spark is written in Java, PySpark uses a library called Py4J 
to convert between python and Java

 

PySpark

11

Worker Node



 Worker nodes
• A worker node provides CPU, memory, and storage to a Spark app
• Worker nodes run a Spark app as distributed processes on a 

cluster of nodes

 Cluster managers
• A cluster manager manages computer resources across a cluster of 

worker nodes
• Provides low-level scheduling of cluster resources across apps
• Enables multiple apps to share cluster resources and run on the 

same worker nodes
• Spark supports 3 cluster managers: Standalone, Mesos, and YARN

Worker Nodes and Cluster Managers

12



 Driver programs
• A driver program is an application that uses the Spark library
• Has data processing code for Spark to execute on worker nodes
• Can launch one or more jobs on a Spark cluster

 Executors
• An executor is a JVM process that Spark creates on each worker 

node for an application
• Executes application code concurrently on multiple threads
• Can also cache data in memory or on disk

 Tasks (i.e. threads)
• A task is the smallest unit of work that Spark sends to an executor
• Executed by a thread in an executor on a worker node

Driver Programs, Executors, and Tasks

13



 Overview
 Jobs
 Shuffles
 Stages
 How does a Spark application operate?
 Where does the data live?

3. Application Execution

14



 In this section we'll explain how applications work in Spark
• i.e. how does a Spark application process data in parallel across a 

cluster of nodes

 Before we dive in, there's some important Spark 
terminology we need to explain first:
• Shuffles
• Jobs
• Stages

Overview

15



 What is a job?
• Technically, a job is when you invoke an action operation on an 

RDD - see later for details
• Spark will execute the work across the cluster of nodes - the 

degree of parallelism depends on what operations you perform
• A job returns results to a driver program

 An application can launch multiple jobs 
• i.e. it can call several action operations on RDDs

Jobs

16



 What is a shuffle:
• A shuffle redistributes data among a cluster of nodes
• This is an expensive operation, because it involves moving data 

across a network

Shuffles

17



 What is a stage?
• Spark splits a job into a directed acyclic graph (DAG) of stages
• A stage is a collection of operations
• A stage may depend on another stage - e.g. a job may be split into 

two stages, where stage #2 can't begin until stage #1 is complete

 Spark groups tasks into stages using shuffle boundaries
• Tasks that don’t need a shuffle are grouped into the same stage
• A task that requires its input data to be shuffled begins a new 

stage

Stages

18



 When a Spark app is run…
• Spark connects to a cluster manager, and acquires executors on 

the worker nodes
• Spark splits a job into a DAG of stages
• Spark then schedules execution of these stages on the executors
• The executors run tasks submitted by Spark, in parallel

 Every app has its own set of executors on worker nodes 
• Tasks from different apps isolated from each other - separate JVMs
• An errant task in one app can't crash another app

 Disadvantage of apps running in separate JVMs…
• Apps can't easily share data, unless they write to disk (expensive)
• Apps sharing data through disk will experience performance issues

How does a Spark Application Operate?

19



 Spark isn’t a data storage system - it works in conjunction 
with external storage systems, such as:
• HDFS
• HBase
• Cassandra
• MongoDB
• Local file system
• Spark SQL

 Spark can work with any Hadoop-compatible data source
• Hadoop compatibility is important for organizations
• E.g. can easily switch from using Hadoop MapReduce to Spark

Where does the Data Come From?

20



 Overview
 Downloading the Spark shell
 Installing and configuring the Spark shell
 Running the Spark shell
 REPL commands
 Running system commands
 Entering Scala expressions

4. Using the Spark Shell

21



 Spark provides a rich API for processing rich data in a 
distributed architecture
• We'll explore the details in the coming chapters

 An easy way to get started with Spark is to use the Spark 
shell
• A command-line REPL (read-evaluate-print-loop) tool 
• Based on the Scala shell
• Allows you to use Spark interactively in Scala

Overview

22



23

Any Questions?


	Slide 1
	Contents
	1. Introduction to Spark
	Overview of Spark
	Spark is Fast
	Spark is Ubiquitous
	Additional Key Features of Spark
	Common Uses of Spark
	2. Spark Architecture
	Overview
	Slide 11
	Worker Nodes and Cluster Managers
	Driver Programs, Executors, and Tasks
	3. Application Execution
	Overview
	Jobs
	Shuffles
	Stages
	How does a Spark Application Operate?
	Where does the Data Come From?
	4. Using the Spark Shell
	Overview
	Any Questions?

